

Table of Contents
Introduction...Page 2

Chapter 1...Page 3

Reverse Engineering the Ideal Monitoring Setup for Your Production Environment
A decision maker’s guide to the tooling ecosystem

Chapter 2...Page 9

The 7 Undeniable Benefits of Implementing Automated Alerting 
Creating strategy to make sure your alerts are meaningful and not just noise

Chapter 3...Page 16

Getting to Inbox Zero With Automated Exception Handling  
How and why should you apply an inbox zero policy when it comes to exception handling
Chapter 4...Page 21

Study: The Top 10 Causes for Unhappiness Among Developers 
A new study lays out the main reasons that lead to unhappy software developers. But why
is it so important?

Chapter 5...Page 27

How Comcast Automates Production Debugging to Serve Over 10 Million Users 
Comcast’s Executive Director of Product, John McCann, explains how OverOps helps his
team stay on top of every new error introduced to the X1 XFINITY platform

Meet OverOps...Page 30

Final Thoughts..Page 32

1All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

The Importance of Automated
Root Cause Analysis in Testing

and Production
We spend our nights here at OverOps dreaming of a fully-automated world. It might
seem a bit weird, but can you imagine how much happier you and your team would
be minus those sleepless nights and endless days sifting through log files trying to
figure out what went wrong?

Those mundane manual tasks are slowing us down as we aim to build innovative
technologies. So, what if they were eliminated from your day-to-day life altogether?
Imagine automated alerting and an empty exceptions inbox. It’s all possible, and
we’re sharing all of the best practices for automating your root cause analysis right
here.

Handling exceptions isn’t just about fixing a problem, it’s about understanding the
inner workings of your application. With automated root cause analysis, time spent
identifying and solving production errors within Java applications is cut down from
days to just minutes.

2All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

Introduction

http://www.overops.com
http://www.overops.com

Reverse Engineering the Ideal
Monitoring Setup for Your
Production Environment

A decision maker’s guide to the tooling ecosystem

Over the last couple of years we’ve had the opportunity to talk with hundreds, if not
thousands, of engineering teams. Looking back at those discussions and at our own
engineering team’s pains, a few similarities started to surface.

It all comes down to this: Monitoring is a tough job, and a big part of it comes down
to the tools and processes you build around it. First, you have to know what you
want to monitor, and this will correlate to one of 3 main tooling categories. Next, we’ll
talk about choosing the right tools for building an automated framework for your
production monitoring stack.

3All rights reserved to OverOps © 2017

Chapter 1

The Complete Guide to Automated Root Cause Analysis | OverOps

Plan for Observability

First, let’s talk about what we’re trying to achieve with monitoring, Observability.

Testing and pre-production environments are great for making sure your application
is ready to be deployed, but they never cover 100% of the errors that your user will
experience. Plus, you can’t rely on users to report every issue they encounter. And
when they do report it, you can’t rely on their report to reproduce the error. That’s
where the importance of planning for Observability comes in.

This comic strip from monkeyuser.com illustrates the concept pretty well.

In your testing environment, the
horizon is clear and you’re
covering the obstacles you’re
planning ahead for, but in the
underground environment of
production, things can get pretty
dark. The obstacles are different
and you can’t see that far ahead.

It’s amazing how even today, the
question…

“How do you know a new
deployment introduced errors into
your system?”

…is usually answered by saying:

“Well, we deploy our code, and
then, we wait. If a day or two pass
by and no one starts screaming
about something, we know that
we’re in the clear.”

The good news is that it doesn’t have to be like this. Enter Observability.

4All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

http://blog.takipi.com/system-observability-making-your-production-environment-great-again/
http://blog.takipi.com/system-observability-making-your-production-environment-great-again/
http://www.monkeyuser.com/
http://www.monkeyuser.com/

What is Observability?

The term Observability comes from the field of control theory. An interdisciplinary
branch of engineering and computational mathematics. It’s a measure for how well
internal states of a system can be inferred by knowledge of its external outputs.

Adapted to operating complex applications in production, we can think of it as a
measure for how well we understand what’s going on under the hood of an
application once it leaves the safe and warm dev or testing environment and real
data is thrown at it at scale. And a lot does happen there. This is a topic that we
frequently explore and covered extensively in another eBook which you can read
right here.

The bottom line is that we need to have excellent visibility into the inner workings of
our application in order to solve any problems as soon as they arise. Creating an
automated monitoring system is the best way to architect for Observability which al-
lows you to identify the issues with the highest priorities so that you can tackle them
without wasting any time.

Basically, Observability is how you know WHEN, WHERE, and most importantly WHY
code breaks in production. It’s easy in development where you’re basically Neo after
he figures out how to manipulate the matrix. Everything is under control, and you
have debugger to step through the code. In production, the situation is different.

The Symptoms of Not Planning for Observability

Creating an automated monitoring system for your production environment is really
about being proactive, rather than reactive. Without it, understanding the ins and
outs of your application requires manual user reports and other, more time
consuming, processes like debugging with log files.

And that kind of sucks. It’s actually one of the top 10 causes for unhappiness in
developers, which we’ll talk about more in Chapter 4.

Let’s see what we can do to gain better Observability for our applications.

5All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

http://land.overops.com/java-application-errors/
http://land.overops.com/java-application-errors/?utm_source=ebook&utm_medium=chapters&utm_content=&utm_campaign=arcebook
http://land.overops.com/java-application-errors/
http://land.overops.com/java-application-errors/
ibooks:///#chapterguid(146E93AF-143D-40F3-947F-3050E366A4B4)
ibooks:///#chapterguid(146E93AF-143D-40F3-947F-3050E366A4B4)

Reverse Engineering Root Cause Detection

We talked with engineering teams in companies like Fox, Comcast, Intuit, Zynga and
others, and took a closer look into what they’re doing to maximize the Observability
of their applications in production.

What they found is that their tooling and processes didn’t give them a good enough
view into the heart of the application. They were often late to detect critical issues.
There was just too much noise out there and when a new or critical error was
introduced into staging or production, it wasn’t detected amidst thousands, if not
millions, of other noisy events.

Frequently, as much as 75% of the time or more, it is the end user or customer that
first detects the problem when the application or service is no longer acting reliably
or is no longer available. These teams are drowning in a sea of noise that, more often
than not, is missing the actual root cause of the errors that they’re investigating.

Rather than accepting the current state as it is, we tried to find the ideal
monitoring stack by reverse engineering it from the top sources for application
failure. To do so, we asked engineering teams what their top sources of failure
were.

It turns out there’s actually a pretty definitive answer to that question.

We found out that when production applications experience failure of any kind, the
root causes behind these failures are derived from 3 possible sources:

6All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

1. First, there is a whole set of application failure problems that are due to
infrastructure issues. And developer teams are seeing that this bucket is
responsible for approximately 25% of their application problems.

2. Then, there is a set of application failures that are due to speed and performance.
And if they would have pulled their tickets and examined them, they would see
that approximately 25% of application failures are due to this particular problem
area.

3. And lastly, the area of functionality and reliability or, in other words, “bugs.” This
group is responsible for the largest amount of failures, approximately 50% of them.
It is in this third bucket, the one that is responsible for the largest amount of
application failures, that OverOps plays in.

We feel that this space is ripe for disruption and we have a technology that can
radically improve the standard approach today. By automating the process around
detection and resolution, OverOps’ technology perfectly complements engineering
efforts in resolving speed and performance issues as well. A personal walkthrough of
the technology is available right here.

Core Use Cases for Popular Monitoring Stacks

To wrap up the introduction of this approach for building a monitoring stack, let’s
briefly cover some examples and use cases in each of the buckets we just
introduced. While these tools have many features, we see that they’re mainly used
for specific problems.

Infrastructure & Availability – 25% of Production Errors

This category includes tools to monitor the infrastructure and availability of your
servers. Think of things like network health checks, response time, and uptime.
Things like CPU, disk space, and memory utilization also fit in here.

Speed & Performance – 25% of Production Errors

Application Performance Monitoring (APM) tools fit in this bucket. We also published
an in-depth eBook that covers the most popular ones, like AppDynamics, New Relic
and Dynatrace, together with open-source alternatives. You can check it out right
here.

7All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

http://www.overops.com/
http://www.overops.com/
https://www.overops.com/request-demo
https://www.overops.com/request-demo?utm_source=ebook&utm_medium=chapters&utm_content=&utm_campaign=arcebook
http://land.overops.com/application-performance-management-ebook/
http://land.overops.com/application-performance-management-ebook/?utm_source=ebook&utm_medium=chapters&utm_content=apmebook&utm_campaign=arcebook
http://land.overops.com/application-performance-management-ebook/
http://land.overops.com/application-performance-management-ebook/

The core use case for APMs is identifying performance bottlenecks, identifying
transactions that take longer than usual to execute, and showing which methods
within them are to blame.

Functionality & Reliability – 50% of Production Errors

In this bucket we have log management tools, and this is also where we chose to
focus most of the efforts with OverOps.

Logs have been around for so long without much real change and innovation. We
have log management tools that help make them searchable, but they’re only as
good as the information that was printed to them in the first place. If something is
missing, you need to add additional logging statements, deploy the code, and hope
that the situation you’re trying to remedy will actually happen again! That’s a bit
paradoxical.

In discussions we had, RJ Lim, a Senior Software Engineer at Zynga, told us “some
problems are very hard to debug even if you have logs, and on some occasions they
might not be debuggable at all. We needed something that could help us debug in
production.”

And Dmitry Erman, Executive Director, Development and Architecture at Fox, told us:
“As opposed to having developers search through logs or attach debuggers to the
production or pre-production environment, OverOps gives us the exact conditions
behind each error. We can see why it happened and if it’s critical for us.”

That’s basically the new thing OverOps offers in a nutshell, that’s what makes it
unique. It enhances and complements your existing log analyzers and performance
management tools, by automating root cause detection. Basically showing you the
variable state behind all of your errors in staging and production. OverOps gives your
team the complete source code and variable state needed to fix errors 90% faster.

Click here to watch a live demo.

Final Thoughts

Building a monitoring strategy is a tough job to get done right. Yet, we believe that
automating your monitoring stack makes troubleshooting in production much
simpler. Get better Observability into your application and solve any problems faster
than before.

8All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

http://www.overops.com/request-demo
https://www.overops.com/request-demo?utm_source=ebook&utm_medium=chapters&utm_content=&utm_campaign=arcebook

The 7 Undeniable Benefits of
Implementing Automated Alerting

What’s the ultimate alerting strategy to make sure your alerts are meaningful
and not just noise?

Production monitoring is critical for your application’s success, we know that now.
But how can you be sure that the right information is getting to the right people?
Automating the monitoring process can only be effective when actionable
information gets to the person it needs to. The answer is automated alerting.
However, there are some elements and guidelines that can help us get the most out
of our monitoring techniques, no matter what they are.

In order to help you develop a better workflow, we’ve identified the top benefits that
your alerts can offer you. Let’s check them out.

9All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

Chapter 2

1. Timeliness – Know as soon as something bad happens

Our applications and servers are always running and working, and there’s a lot going
on at any given moment. That’s why it’s important to stay on top of new errors when
they’re first introduced into the system.

Even if you’re a big fan of sifting through log files, they only give you a retroactive
perspective of what happened to the application, servers or users. Some would say
that timing is everything, and getting alerts in real time is critical for your business.
We want to fix issues before they severely impact users or our application.

This is where 3rd party tools and integrations are valuable, notifying us the minute
something happens. This concept might not sound as nice when an alert goes off at
03:00 AM or during your night out, but you still can’t deny its importance.

TL;DR – When it comes to production environment every second counts, and you
want to know the minute an error is introduced.

2. Context is key to understanding issues

Knowing when an error has occurred is important, and the next step is understanding
where is it happening. Aleksey Vorona, Senior Java Developer at xMatters, told us
that for his company, context is the most important ingredient when it comes to
alerts; “Once an error is introduced into the application, you want to have as much
information as possible so you can understand it. This context could be the machine
on which the application was running on, user IDs and the developer that owns the
error. The more information you have, the easier it is to understand the issue”.

Context is everything. And when it comes to alerts, it’s about the different values and
elements that will help you understand exactly what happened. For example, it would
benefit you to know if a new deployment introduced new errors, or to get alerts when
the number of logged errors or uncaught exceptions exceeds a certain threshold.
You’ll also want to know whether a certain error is new or recurring, and what made it
appear or reappear.

Breaking it down further, there are 5 critical values we want to see in each error:

• What error was introduced into the system

• Where it happened within the code

10All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

• How many time each error happened and what is its urgency

• When was the first time this error was seen

• When was the last time this error occurred

These were some of the issues we had to face ourselves here at OverOps, trying to
help developers, managers and DevOps teams automate their manual error handling
processes. Since each team has its own unique way of handling issues, we created a
customizable dashboard in which you can quickly see the top 5 values for each error.
OverOps allows you to identify critical errors quickly, understand where they
happened within the code and know if they’re critical or not.

TL;DR – You need to know when, where, what and how many errors and exceptions
happen to understand their importance and urgency.

3. Root cause detection – Why did it happen in the first place?

Now that we’re getting automated alerts with the right context, it’s time to
understand why they happened in the first place. For most engineering teams, this is
the time to hit the log files and start searching for that needle in the haystack. That is,
if the error was logged in the first place. However, we see that the top performing
teams have a different way of doing things.

11All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

http://www.overops.com/
http://www.overops.com/

Usually, applications fire hundreds of thousands or even millions of errors each day,
and it becomes a real challenge to get down to their real root in a scalable manner
without wasting days on finding it. For large companies such as Intuit, searching
through the logs wasn’t helpful; Sumit Nagal, Principal Engineer in Quality by Intuit
points out that “Even if we did find the issues within the logs, some of them were not
reproducible. Finding, reproducing and solving issues within these areas is a real
challenge.”

Instead of sifting through logs trying to find critical issues and closing tickets with a
label stating “could not reproduce”, Intuit chose to use OverOps. With OverOps, the
development team is able to immediately identify the cause of each exception, along
with the variables that caused it. The company is able to improve the development
team’s productivity significantly by giving them the root cause with just a single click.

TL;DR – Getting to the root cause, along with the full source code and variables, will
help you understand why errors happened in the first place.

4. Communication – Keeping the team synced

You can’t handle alerts without having everyone on the development team on board.
That’s why communication is a key aspect when it comes to alerts. First of all, it’s
important to
assign the alert
to the right
person. The
team should all
be on the same
page, knowing
what each one
of them is
responsible for
and who’s
working on
which element
of the
application.

12All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

Some teams might think that this process is not as important as it should, and they
assign different team members to handle alerts only after they “go off”. However,
that’s bad practice and it isn’t as effective as some would hope.

Imagine the following scenario: it’s a Saturday night and the application crashes.
Alerts are being sent to various people across the company and some team
members are trying to help. However, they didn’t handle that part of the application
or the code. You now have 7 team members trying to talk to each other, trying to
understand what needs to be done in order to solve it.

This is caused due to lack of communication in earlier parts of the project, leading to
team members to not being aware of who’s in charge, what was deployed or how to
handle incidents when alerts are sent out.

TL;DR – Communication is important, and you should work on making it better as
part of your error handling process.

5. Accountability – Making sure the right person is handling the alert

Continuing our theme of communication from the previous paragraph, an important
part of this concept is knowing that the alert reaches the right person, and that he or
she is taking care of it. We might know which team member was the last one to
handle the code before it broke, but is he the one responsible for fixing it right now?

On our interview him, Aleksey Vorona pointed out that it’s important for him to know
who’s the person in charge of every alert or issue that arises. The person who wrote
the code may be more likely to handle it better than other members of the team, or
there may be another team member be equipped to resolve it.

The bottom line is that by automating your alerts, you can direct exception handling
tasks directly to the team member that is responsible for them. Otherwise, the right
people might miss important information and accountability goes out the window. It’s
problems like these that can lead to unhappy users, performance issues or even a
complete crash of servers and systems.

TL;DR – Team members should be alerted to issues that they are responsible for
maintaining, so that it’s always clear who’s accountable for which tasks.

13All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

6. Processing – Alerting handling cycle

You have your team members communicating and working together, which is great.
However, you still need to create a game plan that the team will aspire to achieve. A
good example of a game plan is having an informed exception handling strategy
rather than treating each event in isolation.

Exceptions are one of the core elements of a production environment, and they
usually indicate a warning signal that requires attention. When exceptions are
misused, they may lead to performance issues, hurting the application and its users
without your knowledge.

How do you prevent it from happening? One way is to implement a “game plan” of
an Inbox Zero policy in the company. It’s a process in which unique exceptions are
acknowledged, taken care of and eventually eliminated as soon as they’re
introduced.

We’ve researched how companies handle their exceptions, and found out that some
have the tendency to push them off to a “later” date, just like emails. We found that
companies that implement an inbox zero policy have better understanding of how
their application works, clearer log files and developers focused on important and
new projects. We’ll cover this more in the next chapter.

TL;DR – Find the right game plans for you and implement them as part of a better
alerting handling process.

7. Integrations? Yes please

Handling alerts on your own might work, but it’s not scalable in the long run. For
companies such as Comcast, servicing over 23 million X1 XFINITY devices, it’s
almost impossible to know which alerts are critical and should be handled ASAP. This
is where 3rd party tools and integrations will be your best friends.

After integrating OverOps with their automated deployment model, Comcast was
able to instrument their application servers. The company deploys a new version of
their application on a weekly basis, and OverOps helps them identify the unknown
error conditions that Comcast didn’t foresee. Watch John McCann, Executive
Director of Product Engineering at Comcast Cable explain how OverOps helps the
company automate their deployments.

14All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

https://www.youtube.com/watch?v=AUtD-FHcwOQ
https://www.youtube.com/watch?v=AUtD-FHcwOQ

Integrations can also be helpful in your current alerting workflow. For
example, Aleksey Vorona from xMatters works on developing a unified platform for IT
alerting, and developed an integration with OverOps. The integration allows the
company to get access to critical information, such as the variable state that caused
each error and alert the right team member.

TL;DR – Use third party tools and integration to supercharge your alerts and make
them meaningful.

Final thoughts

Alerts are important, but there’s much more to it than just adding them to your
application. You want to make sure you have information on why they happened in
the first place, how you should handle them and how can you make the most out of
them (vs. just knowing that something bad happened). Automated alerting is an
important part of the monitoring system. We need the right people to know when,
where and why things go wrong in production so that they can fix it as soon as
possible.

15All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

https://github.com/xmatters/xm-labs-overops
https://github.com/xmatters/xm-labs-overops

Getting to Inbox Zero With
Automated Exception Handling
How and why should you apply an inbox zero policy when it comes to your excep-
tions

Inbox zero is a concept that has been around for a while, and one that tries to help you
keep a clear email inbox and a focused mind. Imagine if you could take this concept, and
apply it to your exception handling process.

Automating the debugging process boosts efficiency allowing teams to implement an in-
box zero policy for their exception handling. With Automated Root Cause detection, teams
are able to see the root cause behind every error and exception and then resolve them so
that they aren’t hanging around. In this way, development teams also gain a better under-
standing of their application by seeing meaningful insight into every exception that’s
thrown.

16All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

Chapter 3

An inbox for exceptions

A production environment is a lot like a living organism, and that’s where the real-
time action is happening. There’s a lot going on behind the scenes, and we need to
be aware of everything that might damage this delicate operation.

One of the core elements of a production environment is exceptions. No matter if
they’re new or recurring; they indicate a warning signal that requires attention. In
Joshua Bloch’s book “Effective Java” he says that “When used to best advantage, ex-
ceptions can improve a program’s readability, reliability, and maintainability. When
used improperly, they can have the opposite effect.”

In addition to that, when exceptions are misused, their sheer number may cause per-
formance issues and leave you unaware of critical issues.

That’s why we need a better way of managing exceptions, and this is where the con-
cept of an exception inbox shines. We heard about this developing practice from en-
gineering teams we spoke to, and think that it should be the golden standard for
more teams to strive to achieve.

An exception inbox is an actual inbox that holds all of the events that happened in a
certain time frame, with the aggregate information about each unique event. It allows
us to go through different issues and manage them as needed. On OverOps, it looks
like this:

17All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

https://www.amazon.com/Effective-Java-2nd-Joshua-Bloch/dp/0321356683
https://www.amazon.com/Effective-Java-2nd-Joshua-Bloch/dp/0321356683

Exception Inbox Zero: A similar concept for a similar issue

The Inbox Zero concept was developed by the productivity expert Merlin Mann, and it cen-
ters on handling every email as an immediate task, until there are no emails left in the in-
box folder. Emails, regardless of what they hold, correspond to a to do list, of sorts, since
they require our attention.

Each email should be translated to an action: acknowledge and archive, delete, reply, or
defer for a later date when you can take care of it. Yet, sometimes we choose to push
aside the “known” and “familiar” email, to be taken care of at a later unknown date. Or in
other words, never.

Our exception inbox will be where we collect, view and handle exceptions, and to that
we’ll apply the inbox zero concept. Just like emails, we have the tendency to push them to
a “later” date, but we need to acknowledge each exception, take care of it and eventually
eliminate it. Otherwise, we’ll have to face major downsides, some we might not even be
aware of:

The top 5 disadvantages of not handling exceptions

Disadvantage #1: Experiencing unnecessary overhead

Every application’s boogieman is inefficient use of memory and CPU resources, and it
makes sense. It can be downright destructive. Whenever an exception is thrown, it creates
an object and sends data to the log. It’s not much when it comes to a single occurrence of
an exception, but what happens if it fails millions of times? Before we know it, the heap
gets clogged, the CPU is wasting precious cycles on meaningless tasks, and we can kiss
performance goodbye.

Aleksey Shipilëv, Principal Software Engineer at RedHat, who has been working on Java
performance for more than 10 years, has an optimistic rule-of-thumb. According to him,
the frequency of common exceptions should be 10^-4, which is a single occurrence of an
exception for 10,000 calls into the method it’s thrown from. An error rate of 0.0001%. Any-
thing beyond that deserves your attention.

What should we do? Keep an eye out for overhead. If an exception happens more often
than 0.01% of the times the method it’s in has been called (at the very least), its root cause
should be taken care of. Poof.

Disadvantage #2: Not understanding how the application really works

The best way to figure out how a toy works is by taking it apart. Same for applications. We
need to increase our application’s Observability (From Chapter 1). In control theory, Ob-

18All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

https://twitter.com/shipilev
https://twitter.com/shipilev
https://shipilev.net/blog/2014/exceptional-performance/
https://shipilev.net/blog/2014/exceptional-performance/
ibooks:///#chapter(1)
ibooks:///#chapter(1)

servability is a measure for how well internal states of a system can be inferred by knowl-
edge of its external outputs.

Exceptions are the external outputs that can give us knowledge regarding the state of the
application. They give us an exclusive look backstage, which could be especially handy
when debugging someone else’s code or working on legacy code.

What should we do? Promote Observability. Exceptions are a big part of this process, and
you need to use the proper tools and techniques in order to understand what’s going on
within the application.

Disadvantage #3: Filling your logs with noisy events

When an error happens, everyone’s go-to-solution is usually to look at the log. There, they
hope to find the information needed to understand why the error happened and if there’s
an exception that could help shed more light on it.

The thing is, logs usually contain massive amounts of information that often has no real
use. If something breaks unexpectedly you’ll have to sift through the logs, and it feels like
looking for a needle in a haystack.

What should we do? Well, as their name suggests, exceptions should only be used for ex-
ceptional scenarios that need to be dealt with as soon as possible. It could be a ticket, a
hotfix or even just acknowledgment of the issue – but it should get the right attention.

Disadvantage #4: Causing developers to be unhappy (more on this later - Chapter 4)

According to a study focused on “The Unhappiness of Software Developers“, the number
one reason leading to unhappiness is being stuck on an issue. Unfortunately, it’s one of
the most common tasks we face throughout the day, usually when debugging issues.

Being stuck on issues and debugging means that there’s no time to work on features or to
write new code. We can end up feeling like we’re playing Whac-A-Mole with exceptions,
trying to eliminate them before they pop-up again.

What should we do? Apply better exception handling techniques. It will require a deep
dive into your existing exceptions and taking care of each one, a required step towards ap-
plying an Inbox Zero technique to managing your exceptions.

Disadvantage #5: Inability to focus on what actually matters

Exceptions cloud the developer’s view. As exception numbers increase, it’s harder to know
which exceptions are more important than others. This could lead to missing a major issue
or dismissing an exception that requires immediate attention.

19All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

ibooks:///#chapterguid(146E93AF-143D-40F3-947F-3050E366A4B4)
ibooks:///#chapterguid(146E93AF-143D-40F3-947F-3050E366A4B4)

What should we do? Unexplained performance issues that have been haunting your appli-
cation could be easily solved when you have your exceptions under control. It’s like the
cholesterol of your application. And you should keep their level under control.

Next step: Run a check up for your application

You should be aware of when an exception happens more often than 0.01% of the times
the method they’re in is called. But how can you tell what’s your exception rate? Our
search for the answer to that question is part of what lead us to create OverOps.

The tool gives you a complete overview of your exceptions, pinpointing the root cause for
each error that occurred in production. With one click, you can see the complete source
code and the variable state that caused them, across the entire call stack.

With OverOps you’ll be able to see how many times each exception happened, and get
the detailed error rate of how many times it failed. In less than 5 minutes you can start
counting (and solving!) your exceptions. Get a personal walkthrough of the Exception In-
box Zero concept and start calculating your exception rate within minutes.

Final thoughts

The official Java documentation states that “An exception is an event that occurs during
the execution of a program that DISRUPTS the normal flow of instructions”. But more of-
ten than not, exceptions are abused and used as part of the normal application flow, and
that’s less than ideal to say the least.

Just as the name implies, exceptions should be exceptional. Each one should be action-
able and result in code changes, in order to eliminate the exception altogether. Reaching a
zero-exception environment will lead to a better performing application and a cutting edge
user experience, and Automated Root Cause detection can help get you there.

20All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

https://www.overops.com/
https://www.overops.com/
https://www.overops.com/request-demo
https://www.overops.com/request-demo?utm_source=ebook&utm_medium=chapters&utm_content=&utm_campaign=arcebook
https://www.overops.com/request-demo
https://www.overops.com/request-demo

Study: The Top 10 Causes for  
Unhappiness Among Developers

A new study lays out the main reasons that lead to unhappy software develop-
ers. But why is it so important?

Are you happy as a software developer? If that question sounds weird or out of
place, it shouldn’t be. It’s a pressing issue for employers, HR teams and companies
in general. A happy developer is often a productive developer, and keeping develop-
ers happy should be a top priority for companies who produce software.

A new paper titled “On the Unhappiness of Software Developers” aims to solve that
challenge. The researchers behind it wanted to see how to keep developers happy,
and how to filter out the main reasons for their “unhappiness” in the workplace.

21All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

Chapter 4

TL;DR; Developers are pretty happy, but...

A research team recently wanted to see what the main causes are that could lead to
unhappiness among software developers. The researchers were able to isolate over
200 causes of unhappiness and divide them into categories. The result? Somewhat
of a guideline that could help make your teams happier.

Why should developers be happy?

A fun and happy work environment is something most companies try to offer. It could
be perks like… slides that connect different floors, jam sessions during lunch or even
unlimited vacation days. There’s always that little extra something, to keep employ-
ees happy.

It’s no surprise that companies spend time, energy and money to make sure develop-
ers are happy whenever they’re at work. But why is it so important?

The idea that happy developers are better at their job is not new, and it’s not surpris-
ing. It makes sense that if we’re happy, having fun and continue learning we are more
productive in our work.

It’s not only a theory. In the study “Happy Developers Solve Problems Faster”, the re-
searchers were able to prove this assumption.

The study, conducted by Daniel Graziotin, Xiaofeng Wang and Pekka Abrahamsson,
sets out to see how productivity and software quality could improve. It focused on
the developers themselves, providing incentives to make them satisfied and happy
with their work.

The results showed that the happiest developers were able to solve an analytical
problem better than their “unhappy” co-workers. The conclusion also pointed out
that keeping developers happy could reduce job burnout, anxiety and remove nega-
tive experience in the workplace.

Now that we know the “why”, it’s time to get to the most important part – the “how”.

Why are developers unhappy?

If you’re looking for a clear answer, we have some news for you. According to the cur-
rent study, “On the Unhappiness of Software Developers“, there are many causes for

22All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

https://peerj.com/articles/289/#conclusions
https://peerj.com/articles/289/#conclusions
https://arxiv.org/pdf/1703.04993.pdf
https://arxiv.org/pdf/1703.04993.pdf

unhappiness. 219 causes, to be exact. On the bright side, the researchers were able
to group them into 2 main categories:

• Developer’s own being (i.e., internal causes) – Focusing on personal state 	and ac-
tions originating from the developers own behaviors

• External causes – How developers are affected by something they have no control
of

Yet, these 2 main categories are still too broad for us to understand the exact causes
of unhappiness. That’s why the researchers dissected them into 18 subcategories, so
it will be easier to pinpoint the cause that might lead to unhappiness. Then, they ex-
tracted the top 10 causes of unhappiness among software developers.

Before diving into the causes themselves, this chart shows us that out of the top 10
causes that make developers unhappy, 7 are external.

Among the top causes of unhappiness, we can see issues we’ve all faced: tight dead-
lines, bad code quality (written by other members of the team), underperforming col-
leagues, repetitive tasks and so on.

On the bright side, this means that in most cases, we can affect the unhappiness of a
developer. It also means that we can be aware of certain issues that might lead to un-
happiness, and react. We can help turn that frown upside down.

But there’s also some not-so-happy-news. The chart holds 3 internal causes for un-
happiness. The most significant cause that makes developers unhappy is being
stuck on a problem. Unfortunately, it’s a common issue that’s hard to avoid.

23All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

Another internal cause that appears in the chart, is feeling inadequate with work. This
feeling could arise when a developer is unfamiliar with his/her work environment. This
could include tools, languages, frameworks, or development methods used by the
team.

The last internal reason has nothing to do with work, but it still affects it – personal is-
sues. According to the researchers, in most cases personal issues are family related.

The bottom of the list is a bit surprising if you ask us. Causes such as misuse of soft-
ware by a customer, being too technical or git conflicts lead to the least amount of un-
happiness among developers.

If you’re interested in the full list of 219 causes of unhappiness, you can view it here.

Helping developers
stay happy

The number one reason
that leads to unhappiness
among developers is being
stuck on an issue. Unfortu-
nately, it’s one of the most
common tasks any devel-
oper faces throughout the
day. Automating the debug-
ging process with full root
cause analysis reduce time
stuck on troubleshooting.

Since one of the most time
consuming tasks develop-
ers face is debugging, and
being stuck on bug related
problems 20-40% of your
time on average is no fun at
all, we thought there must be a better way to tackle these errors. That’s where
OverOps comes in.

24All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

https://figshare.com/articles/Qualitative_codes_for_the_causes_of_unhappiness_of_software_developers/4596337
https://figshare.com/articles/Qualitative_codes_for_the_causes_of_unhappiness_of_software_developers/4596337

When it comes to debugging in production, most of the wasted time is spent on try-
ing to reproduce the variable state that caused the error. Sifting through logs is just
plain annoying. Most of the time, they’re super noisy and the information you’re look-
ing for isn’t even there.

With OverOps, you can see the exact variable state behind any exception, logged er-
ror or warning, without relying on the information that was actually logged. It lets you
immediately see the complete source code and variable state across the entire call
stack of the event. Even if it wasn’t printed to the log file.

How can we deal with unhappiness?

There’s no doubt that the unhappiness of developers is an important issue that
should be handled. However, the causes detailed in this research could seem a bit
broad, and each developer has a different take on the various causes. That’s why
we’ve decided to ask other developers how they feel about this research, and the
causes lined up in it.

Eugen Paraschiv, an engineer, architect and the person behind Baeldung found the
first cause surprising. While being “stuck on a problem” is familiar to any developer
and is a cause for temporary frustration, he wouldn’t label it as being “unhappy”.
Baeldung’s opinion is that when the problem is under our control, working on it is gen-
erally rewarding, even if it’s sometimes frustrating to be stuck.

Oleg Shelajev, a product engineer and developer advocate at ZeroTurnaround,
pointed out that most of the causes lined out in this research have the same base
concept: They all relate to being unproductive, or having to sacrifice seemingly
achievable quality of the project they work on for some reasons.

This could be the result of bad planning and time pressure, inadequate team skills, al-
ready rotting code base, or not having access to modern tools that make life easier,
etc. In other words, when developers know they can be better but something pre-
vents them from achieving it, they feel unhappy.

Shelajev adds that some of the things that make us unhappy are hard to solve: is-
sues with the management, the team, the planning, making everyone invest in code
quality. Still, the fact is that some of them could be solved with the proper tooling: a
proper IDE, a debugger you know how to use, an APM solution, a powerful dedi-

25All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

https://twitter.com/baeldung
https://twitter.com/baeldung
http://www.baeldung.com/
http://www.baeldung.com/
https://twitter.com/shelajev
https://twitter.com/shelajev
https://zeroturnaround.com/
https://zeroturnaround.com/

cated Jenkins cluster, a crash monitoring solution, sane logs, JRebel, thought
through libraries and frameworks or any other combination that works for you.

Peter Cooper, a software developer, podcaster, blogger, author and more believes
that the causes for developer unhappiness are not significantly different to those for
people doing other types of job. While poor management and poor setting of expecta-
tions and requirements seem to be behind most unhappiness, those things will make
most jobs hard to tolerate and will lead to unhappiness.

Looking at the numbers

This research is based on a survey that included 2,220 developers, spread across 88
countries, and the most represented nationality was American, with 24% of respon-
dents. The majority of participants were men (94%), with an average of 8.2 years of
experience, and people who were born at 1984.

Out of the total participants, 75% are professional software developers. Only 8% are
in management roles, such as CEO, CTO and other c-level positions. 10% of partici-
pants develop software as a hobby, passion or volunteer without pay.

Final Thoughts

We can’t say it’s a surprise that happy developers are better developers. This re-
search gives us an idea as to what the impact may be of continuing to rely on manual
processes for debugging purposes.

Implementing Automated Root Cause analysis won’t rid the world of developer un-
happiness, but it’s undoubtedly a step in the right direction.

26All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

https://twitter.com/peterc
https://twitter.com/peterc

How Comcast Automates
Production Debugging to Serve

over 10M Video Customers

Comcast’s Executive Director of Product, John McCann,    
explains how OverOps helps his team stay on top of every
new error introduced to the X1 XFINITY platform

We sat down with John McCann, the Executive Director of
Product Development at Comcast, to see how he and his
team are using automation to improve their debugging proc-
ess. First, we’ll get to know their team a little bit more and then
we’ll jump right into some highlights from our interview with John.

XFINITY's X1 is the flagship application for Comcast, providing users with a different
television experience. The application offers an interactive platform combining univer-
sal search results from live TV, Comcast's On Demand programming, and DVR re-
cordings, in addition to personalized recommendations and apps. It runs on 23 mil-
lion devices, across dozens of different data centers.

What are some of your key challenges and pain points?

“We offer services for over 23 million boxes, which means that an issue in production
impacts a lot of users. Since we deploy a new version of our application on a weekly
basis, we have to stay on top of every new error and exception that might impact the
application’s performance.

27All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

Chapter 5

Our monitoring method was inconsistent. We had a log management tool with prede-
fined queries to detect errors and exceptions, and we would spend a lot of time go-
ing through the logs trying to identify their severity level and which are worth investi-
gating. One person's set of go-to queries wasn't the same as the next person. Often
times different people were looking at different things. And this was relevant only for
a handful of the alerts. Our scale led to these alerts not being great in terms of their
effectiveness, and sometimes we disregarded them since they were noisy.

This was a tedious process, that involved manual effort from our team. Since there
are millions of devices that run our application, pinpointing a single error or trying to
reproduce it takes up too much time and resources.

When issues hit production, it would impact our customers and it was up to us to try
and figure out what went wrong and how to quickly fix it.”

How OverOps has helped you solve issues?

“We’ve integrated OverOps with our automated deployment model, that helps us in-
strument our application servers.

We use OverOps regularly for all of the unknown error conditions that we didn’t fore-
see. It helps us automate the process of sifting through log files, making it easier to
detect issues as soon as they appear.

In fact, we had a full day where the whole team did what we called an “exception
burn-down day”, where we basically spent an entire day fixing exceptions and log er-
rors that were identified by OverOps. We spent a good amount of time essentially re-
ducing the noise in our application and in a lot of cases fixing problems that had
eluded us in the past.

Thanks to OverOps, we now have visibility into the long tail of problems that the sys-
tem has, that we otherwise wouldn't have visibility into. We know as soon as an error
occurs and have the ability to react fast to every issue, error or exception.”

How are you integrating OverOps with your daily workflow?

“After installing OverOps, we almost immediately saw detailed data about our applica-
tion’s performance. We were able to detect where exceptions were thrown, and could
display changes in the application’s behavior.

28All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

OverOps is especially helpful when it comes to issues that might impact our users.
We use the OverOps dashboard to see our application's behavior and look for trends
along with some of the aggregated metrics. That way, we can look for highly problem-
atic areas and quickly detect and fix any error without harming the user’s experi-
ence.”

Final Thoughts

Comcast needed to implement Automated Root Cause analysis to support their high
frequency release cycle. With less time in between deployments, it became even
more critical for their team to be able to identify production errors as soon as they oc-
curred. Hear more about Comcast’s story with automated deployments here.

29All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Analysis | OverOps

http://blog.takipi.com/video-how-comcast-automates-deployments-to-serve-over-10-million-xfinity-customers/
http://blog.takipi.com/video-how-comcast-automates-deployments-to-serve-over-10-million-xfinity-customers/

30All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Detection | OverOps

https://www.overops.com/?utm_source=ebook&utm_medium=chapters&utm_campaign=loggingebook
https://www.overops.com/?utm_source=ebook&utm_medium=chapters&utm_campaign=arcebook

Datasheet

© Copyright 2017, OverOps, inc. All rights reserved. All trademarks, trade names,
service marks and logos referenced here in belong to their respective companies. 2.2017

Tel: 1-800-324-3053
343 Sansome Street San Francisco, CA 94107

www.overops.com

Supported Platforms:
JDK 1.6 and above | HotSpot, OpenJDK, IBM JVM | Java, Scala, Clojure, Groovy | Linux, OS X, Windows |
Docker, Chef, Puppet, Ansible | Coming soon: .NET

Integrations:
SLF4J, Log4j, Logback, Apache Commons Logging, Java Logger | Splunk, ELK, SumoLogic, and any other log management
tool | AppDynamics, New Relic, Dynatrace | Workflow automation: Slack, HipChat, JIRA, Pagerduty | Webhooks | StatsD

Real Time Detection
- See all caught and uncaught exceptions, logged
 warnings, logged errors, and HTTP errors
- Group errors by microservice, server, app, or deployment
- Drill into the root cause of each event through the error
 analysis view
- Create custom views and alerts to focus on the errors
 your team cares about the most
- Receive a push notification for critical errors
 through Slack, HipChat, PagerDuty, JIRA or Email

Code and Variable State
- Code View: See the complete source code and
 variable state across the entire call stack
- Log View: See the last 250 DEBUG level statements
 leading to the error, even if they weren’t logged
- JVM View: See the memory state at the moment of
 error, including active threads and process metrics
- Open a JIRA ticket with the exact state that caused the error
- See multiple snapshots of recurring errors

Full Code and Variable State
Immediately reproduce any error.
No need to manually reproduce issues
by searching for information in logs.

Reliability and Availability
Proactively detect all new and critical
errors. Prevent negative impact to your
users and business.

<1% overhead in production
OverOps operates between the JVM and
processor level, enabling it to run in
staging and production.

No Changes to Code or Build
Immediately deployed in minutes.
Every new code release or microservice is
automatically monitored for new errors.

PII Redaction and AES Encryption
Source code and variable state are redacted
for PII and privately encrypted with 256-bit
AES keys. HIPAA and PCI compliant.

Fits Into Existing Workflow
Native integration with current tooling
ecosystem. New errors are automatically
routed to the right developer.

Final Thoughts
Debugging is crucial, but there’s no reason why we should be spending so much
of our time on manual tasks like sifting through log files and trying to reproduce
user-reported errors. Without visibility into the real root cause of what’s going on in
your application, it’s hard to fix and maintain it.

Plus, identifying and handling exceptions should be about more than just fixing a
problem. By automating root cause analysis, you can achieve better visibility of
your application in production so that debugging doesn’t waste your days or keep
you up at night.

We hope you’ve found this guide useful and would be happy to hear your
feedback on twitter @overopshq and over email: hello@overops.com

32All rights reserved to OverOps © 2017

The Complete Guide to Automated Root Cause Detection | OverOps

https://twitter.com/overopshq
https://twitter.com/overopshq
mailto:hello@overops.com?subject=Automated%20Root%20Cause%20Analysis%20eBook%20Feedback
mailto:hello@overops.com?subject=Automated%20Root%20Cause%20Analysis%20eBook%20Feedback

